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Disclaimer 

There are no warranties, explicit or implicit, that this program is free of error, or is consistent with any 

particular standard of accuracy, or that it will meet your requirements for any particular application. It 

should not be relied on for any purpose where incorrect results could result in loss of property or 

personal injury.  If you do use the program for any such purpose it is at your own risk. The authors 

disclaim all liability of any kind, direct or consequential, resulting from the use of this program. 

If you find that something does not seem to work correctly with RC-Analysis, please report the problem 

to vasuarez@utpl.edu.ec.  This program is available free of charge as part of the Virtual Laboratory for 

Earthquake Engineering VLEE. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



INTRODUCTION 

Most of buildings and bridges are designed to exceed their elastic limits when attacked by the design 

earthquake. Exceeding elastic limits for reinforced concrete sections means cracking of concrete, 

yielding of reinforcement, crushing of concrete and eventual collapse of the section.  

The nonlinear flexural behavior of reinforced concrete sections can be assessed by a special type of 

section analysis called Moment-Curvature analysis. The outcome of this analysis is the relation between 

applied moment and related curvature in the section. Other very important information is the relation 

between curvature and concrete strain, steel strain and neutral axis depth.  

The theory of beam flexure states that curvature is the second derivate of displacement. Moment-

curvature relation is then very important since gives the correspondence between moment and 

curvature necessary to the calculation of displacement due to forces acting in inelastic elements. 

Furthermore, it allows the assessment of displacement at different limit states of damage. 

  

PROGRAM DESCRIPTION 

RC-Analysis produces a Moment-Curvature curve coupled to a shear strength curve for different types of 

concrete sections. The program is available free of charge to registered users of the Virtual Laboratory 

of Earthquake Engineering, and can be accessed on-line from www.utpl.edu.ec/vlee. 

The program is operated on-line. No downloads or installation is required. The programs features a web 

interface (Fig. 1) where the user inputs the section geometry, reinforcing and material properties. The 

analysis is performed by clicking the “Run Analysis” button. The output is presented in two sections, one 

containing the response plots along with the most important analysis values and another including a 

text file with all the analysis information.   



 

Figure 1 RC-Analysis Interface 

 

Currently RC-Analysis supports beam sections (Fig. 2), rectangular column sections and circular column 

sections.  For beam analysis the user can choose to put the top or bottom of the section in tension. In 

the rectangular column analysis the user can specify an angle for application of moment. This angle 

should correspond to the angle of the moment resultant in the case of biaxial loading. 
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Figure 2 Sections supported in RC-Analysis 

RC-Analysis models the nonlinear behavior of confined concrete, unconfined concrete and the 

reinforcing bars, to obtain the Moment-Curvature response. The shear strength plot is obtained using 

the modified UCSD model (Kowalsky and Priestley, 2000). From the M-C plot different response limit 

states can be identified. The M-C and the shear strength response are coupled to show whether 

moment or shear will control failure of the section. Details of the models and theory implemented in 

this program are presented in the following section. 

 

HOW IT WORKS 

Once the user enters the geometry, reinforcing, material properties and other design parameters, the 

analysis is performed as follows:  

Step 1. Material Models 

The default models for the unconfined and confined concrete are those proposed by Mander, Priestley 

and Park (1988). The default model for steel is the one used by King (1986) in his section analysis 

program. A detailed description of the models is presented next: 



 

 

Figure 3 Mander model for confined and unconfined concrete 

 

Figure 4 Model for reinforcing steel 

Model for the confined concrete 

Mander et al. (1998) have proposed a unified stress-strain approach for confined concrete (Fig. 3) 

applicable to circular and rectangular sections. Since experimental results have shown that the ultimate 

concrete strain calculated based on the Mander model to be consistently conservative by 50% 

(Kowalsky, 2000), the original Mander expression for ��� is modified as shown in equation 6. The 

longitudinal compressive stress, ��, is given by: 
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For rectangular sections 
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VW,; YZ8 : Clear distance between longitudinal adjacent bars 

 

Model for the Unconfined Concrete 

The Unconfined Concrete follow the same  curve that  the confined concrete (eq. 1) with f’cc = f’co . The 

part of the falling branch for strains larger than  is assumed to be a strainght line which reaches zero at  

the spalling strain (tipically 0.0064). 

 

Model for Reinforcing Steel 

The stress-strain relation for the reinforcing steel (fig. 4) is the same used by the King program (1986) 
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Figure 6 Direction of the applied moment 

 

�h � � cos l � m sin l                                                     (18) 

mh � � sin l � m cos l                                                     (19) 

 

Step 4. M-C Analysis 

To start the M-C analysis the following parameters are be defined: 

a) The number of analysis points. RC-Analysis runs 50 points by default 

b) The concrete strain, εc, for each analysis point. RC-Analysis varies εc linearly from 0 to εcu 

c) The neutral axis depth must be guessed 

Next, section analysis is performed at each concrete strain level to get a series of M-C points.  Section 

analysis is accomplished as follows: 

 

Step 4.1 Strain computation 

For the selected value of εc and the assumed neutral axis depth c, the curvature in the section is given 

by Equation (20) then; the strain at each fiber location is computed with Equation (21). This assumes 

plain sections remain plain after flexure. 

p � ��
�                                            (20) 



� � pLmh � qO                            (21) 

 

Step 4.2. Stress computation 

Stress is computed for each fiber on the basis of computed strain and the corresponding stress-strain 

model. 

 

Step 4.3. Force equilibrium check 

The force in each fiber results from the product of the stress in the fiber and the area of the fiber. The 

area of the concrete fibers is given by the size of the grid. The area of the steel fibers is based on the 

diameter of the bars. 

The internal forces in the section must be in equilibrium with the applied axial load. This is checked 

using Equation (22), where EQR is the equilibrium error; F is the sum of all fiber forces (compression 

forces are positive and tension forces are negative) and P is the axial load P (positive). 

!rs � t � u                                                                                                                                       (22) 

If EQR is positive, the assumed c is too large and the process is repeated from Step 4.1 with a reduced 

value of c. If EQR is negative, the assumed c is too small and the process is repeated from Step 4.1 with a 

larger c.  If the absolute value of EQR is smaller than the analysis tolerance (In RC-Analysis Abs (EQR) < 

0.0001), analysis is continued. 

 

Step 4.4. Moment computation 

Once c has converged, the moment in the section is computed with Equation (23) 

v � ∑tWmh                                        (23) 

 

Step 4.5. Output 

The following data is recorded:  Curvature, Moment, Neutral Axis Depth, Concrete Strain, and Steel 

Strain. Then the analysis is repeated from Step 4.1 with a new value of concrete strain. 

 

 

 



Bilinear M-C Diagram 

Moment-curvature relations can be well fitted with a bilinear diagram. This is commonly done to easy 

the calculations based on the moment curvature relation. There are several methods that have been 

proposed for this task. RC-Analysis produces the bilinear diagram by having a line starting at the origin 

and passing by the point of first yield, and other line that starts in the point of failure and that cuts the 

first line in a point where moment equals the nominal moment of the section. The point at which the 

two lines intercept sets the yield curvature and yield moment of the section. The slope of the first line 

gives the cracked flexural stiffness, EI, of the section. The yield curvature is an important inherent 

property of the section that is used in the computation of yield displacement and damage indexes such 

as ductility.  

Shear Capacity 

The shear strength envelope for the member is calculated using the revised UCSD shear model 

(Kowalsky and Priestley, 2000). The original UCSD model was the first model for assessment of shear 

strength that included: (1) the effect of the axial load separate from the concrete strength and (2) the 

degrading of concrete strength with ductility. The revised model intends to take also into account: (1) 

the effect of concrete compression zone on the mobilization of transverse steel and (2) the influence of 

the aspect ratio and the longitudinal steel ratio in the shear strength of the concrete. The model 

expresses the shear strength capacity of the member as the sum of three separate components as 

shown in equation 24. Vs represent the shear Capacity attributed to the steel truss mechanisms, Vp 

represents the strength attributed to the axial load and Vc represents the strength of the concrete shear 

resisting mechanism. 

 

w � w" � w> � w�                                                                                 (24) 
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Where clb is the cover to the longitudinal bar, ?8is the diameter of the transverse steel and c is the 

depth of the neutral axis at v|. The concrete contribution is obtained with the following equation, 

where the coefficients } ~� are given in Fig. 7. 

 

w� �} ~����,d0.8=�f                                                                     

 (27) 

 

 

 



 

Figure 7  α β γα β γα β γα β γ factors of UCSD modified model 

 

 

w> � u y��
2�                               u � 0   Single bending             (28) 

w> � u y��
�                               u � 0    Double bending          (29) 

w> � 0                                     u \ 0                                       (30) 
 
 
Equations 24 to 30 are used for the assessment of the shear strength of existing structures. For the 

design of new structures a more conservative approach is used: the axial load is reduced by 15%, the 

angle of the flexure-shear crack is incremented to 35˚ and a shear strength reduction  

Factor of 0.85 is applied. 

 
 
VERIFICATION EXAMPLES 

Example1. Analysis of a circular column 

A 1000 mm diameter RC column section is analyzed to obtain its moment-curvature response. The 

concrete in the column has a compression strength f’c = 24 MPa and it is reinforced to resist flexure with 

24D25 bars. The shear reinforcement in the section is given by a 12mm spiral spaced 150mm. Since the 

column is in double bending, the shear span in one half of its height, which results in Hs = 3m. The cover 

to the centre of the main reinforcement is 50 mm. The yield strength of the reinforcing bars and spiral is 

fy = 420 MPa, with a strain hardening ratio of 1.4. The axial load acting on the column is 3000 kN.  The 

section and material properties as entered in RC-Analysis are shown in Fig. 8 



 

Figure 8 Example data as entered in RC-Analysis 

 



 

Figure 9 Main analysis results 

The analysis results in the graph and data shown in Fig. 9.  For verification purposes the same section is 

analyzed with Response 2000 (Bentz, 2000), the program USRC (Esmaeily, 2001) and CUMBIA (Montejo, 

2007) and resulting M-C Diagrams are shown in Fig. 10.  Along with the one obtained with RC-Analysis.  

 

Figure 10 Comparison of M-C curves 



 

 

From the analysis of Fig. 10 it is concluded that RC-Analysis produces a M-C curve that is very close to 

other curves found with programs such as Cumbia and USC RC that use Mander’s models for concrete. 

The shear capacity curve is also close to that found with Cumbia. 
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