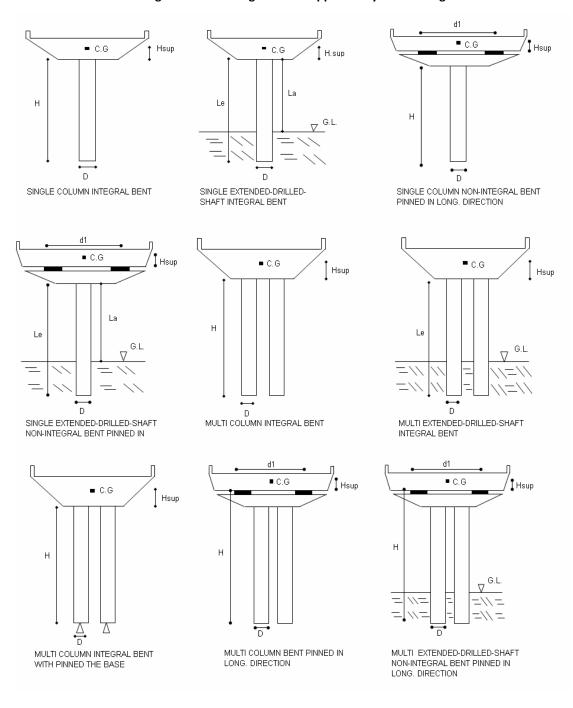
ITHA-BRIDGE

SOFTWARE FOR INEASTIC TIME HISTORY ANALYSYS OF BRIDGES PRE-PROCESSOR AND POST-PROCESOR OF OPENSEES Vinicio A. Suarez and Mervyn J. Kowalsky


INTRODUCTION

The program <u>ITHA-Bridge</u> has been developed to perform Inelastic Time History Analysis (ITHA) of highway bridges. This program is a pre-processor and post-processor of <u>OpenSees</u> and has the following features:

- From a basic input automatically generates the bridge model files for OpenSees.
- Supports the substructures shown in Figure 1, integral and seat-type abutments. Also supports superstructure joints and plan curvature.
- Multiple acceleration records can be run in batch mode automatically.
- Checks convergence errors in solution and adjusts the analysis time step if necessary to achieve convergence.
- Produces and output file combining the output of the different acceleration records that were run.

ITHA-Bridge and its documentation can be accessed and used on-line though the Virtual Laboratory for Earthquake Engineering (VLEE) at www.utpl.edu.ec/vlee. The VLEE provides an interactive user interface for ITHA-Bridge and other related programs such as DDBD-Bridge.

Figure 1. Pier configurations supported by DDBD Bridge

RUNNING DDBD-BRIDGE

To run the program the user must input the data requested in the web interface and run the program on-line. Then, the user will receive an email with the report of the simulation.

INPUT DATA

When using the web interface, the user inputs a number of design variables. These parameters are defined next.

Bridge Configuration

NSPAN Number of spans [1-8]

SLENGTH Total length of the superstructure (m) [> 0]

SANGLE Subtended angle that gives plan curvature (deg) [> 0]

Superstructure

SW Weight of the superstructure (kN/m) [>0]

SH Distance from the centroid to the bottom of the superstructure

section (m) [>0]

IZ Out-of-plane inertia of the superstructure section (m4)

IY In-plane inertia of the superstructure section (m4)

EC Elastic modulus of the superstructure (MPa)

A Area of the superstructure section (m2)

J Torsion constant of superstructure (m3)

NPS Number of frame elements each span is divided in

NEJ Number of expansion joints in the superstructure

Earthquake records

NEQ Number of acceleration records to be applied

TOL Tolerance in the ITHA solution (0.0001 - 0.000001)

PDELTA 0 to turn off P-Delta effects in the analysis

1 to turn on P-Delta effects in the analysis

ACCX Name of the file that has the acceleration record to be applied in

the X direction

ACCY Name of the file that has the acceleration record to be applied in

the Y direction

DUR Duration of the record (s)**DT** Time step of the record (s)

FX Factor applied to the record in the X directionFY Factor applied to the record in the Y direction

Material Properties

WC Unit weight of concrete (kN/m^3) [>0]

FPC Specified unconfined compressive strength of concrete (MPa)

[>0]

FY Specified yield stress of longitudinal reinforcement bars (MPa)

[>0]

FUR Ratio between ultimate and yield stress of longitudinal

reinforcement bars [>1]

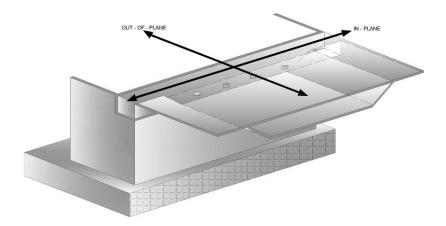
ESU Strain at maximum stress of longitudinal reinforcement bars

[0.06 - 0.12]

FYH Specified yield stress of transverse reinforcement bars (MPa)

[>0]

FURH Ratio between ultimate and yield stress of transverse


reinforcement bars [>1]

ESUH Strain at maximum stress of transverse reinforcement bars [0.06-

0.12]

Substructure Types

Abutment

STA Distance from the left end of the bridge to the element (m) [0 or

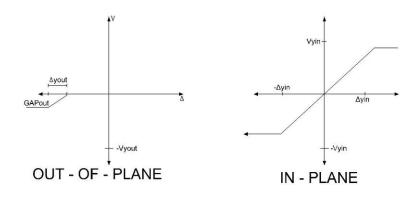
SLENGTH]

SKEW Skew angle (Degrees measured from axis perpendicular to

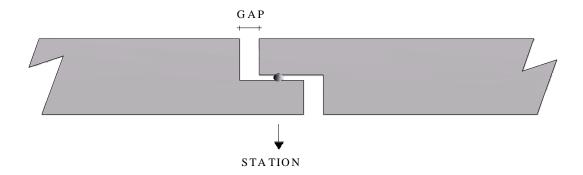
bridge) [0 a 90]

DYOUT Out-of-plane yield displacement (m)

DYIN In-Plane yield displacement (m)

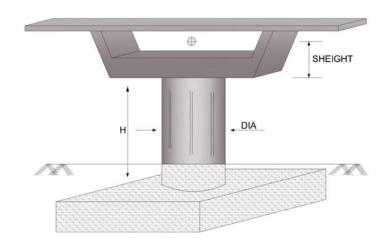

VYOUT Out-of-plane yield force of the abutment (kN)

VYIN In-plane yield force of the abutment (kN)


GAPOUT Expansion gap in the longitudinal direction of the abutment

DAMP Viscous damping (%) [5%-10%]

Weight of the abutment (kN) [>=0]


Expansion Joint

STA Distance from the left end of the bridge to the element (m) [0-SLENGTH]

GAP Size of the expansion gap (m) [>=0]

Single column integral bent

STA Distance from the left end of the bridge to the element (m) [0-

SLENGTH]

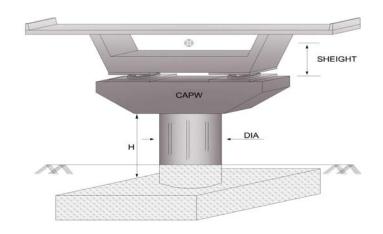
DIA Diameter of the column (m) [>0]

H Clear height of the column (m) [>0]

NLBAR Number of longitudinal bars

DLBAR Diameter of the longitudinal bars (m) [>0]

DHBAR Diameter of the transverse reinforcement (mm) [>0]


HBARS Spacing of the transverse reinforcement (mm)

COV Concrete cover to the transverse reinforcement (mm)

NPC Number of elements in which the column is divided [1-5]

CBW Weight of the Capbeam (kN)

Single column bent

STA Distance from the left end of the bridge to the element (m) [0-

SLENGTH]

DIA Diameter of the column (m) [>0]

H Clear height of the column (m) [>0]

NLBAR Number of longitudinal bars

DLBAR Diameter of the longitudinal bars (m) [>0]

DHBAR Diameter of the transverse reinforcement (mm)

HBARS Spacing of the transverse reinforcement (mm)

COV Concrete cover to the transverse reinforcement (mm)

NPC Number of elements in which the column is divided [1-5]

CBW Weight of the Capbeam (kN)

SKEW Skew angle [0-90]

Multi column integral bent

STA Distance from the left end of the bridge to the element (m) [0-

SLENGTH]

DIA Diameter of the column (m) [>0]

H Clear height of the column (m) [>0]

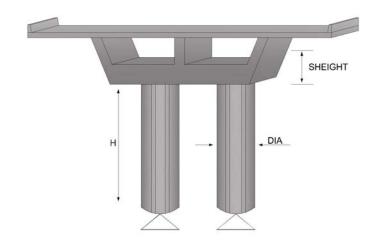
NLBAR Number of longitudinal bars

DLBAR Diameter of the longitudinal bars (m) [>0]

DHBAR Diameter of the transverse reinforcement (mm) [>0]

HBARS Spacing of the transverse reinforcement (mm)

COV Concrete cover to the transverse reinforcement (mm)


NPC Number of elements in which the column is divided [1-5]

NCOLS Number of columns in the bent

SCOL Spacing of the columns

CBW Weight of the Capbeam (kN)

Multicolumn integral bent with pinned base

STA Distance from the left end of the bridge to the element (m) [0-

SLENGTH]

DIA Diameter of the column (m) [>0]

H Clear height of the column (m) [>0]

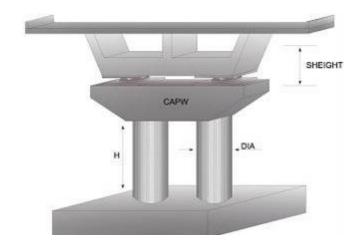
NLBAR Number of longitudinal bars

DLBAR Diameter of the longitudinal bars (m) [>0]

DHBAR Diameter of the transverse reinforcement (mm) [>0]

HBARS Spacing of the transverse reinforcement (mm)

COV Concrete cover to the transverse reinforcement (mm)


NPC Number of elements in which the column is divided [1-5]

NCOLS Number of columns in the bent

SCOL Spacing of the columns

CBW Weight of the Capbeam (kN)

Multicolumn bent

STA Distance from the left end of the bridge to the element (m) [0-

SLENGTH]

DIA Diameter of the column (m) [>0]

H Clear height of the column (m) [>0]

NLBAR Number of longitudinal bars

DLBAR Diameter of the longitudinal bars (m) [>0]

DHBAR Diameter of the transverse reinforcement (mm) [>0]

HBARS Spacing of the transverse reinforcement (mm)

COV Concrete cover to the transverse reinforcement (mm)

NPC Number of elements in which the column is divided (1-5)

NCOLS Number of columns in the bent

SCOL Spacing of the columns

CBW Weight of the Capbeam (kN)

SKEW Skew angle[0-90]

CAPH Height of the capbeam (m)